Effects of hypercapnia and hypoxemia on respiratory sinus arrhythmia in conscious humans during spontaneous respiration.

نویسندگان

  • Y C Tzeng
  • P D Larsen
  • D C Galletly
چکیده

Normally, at rest, the amplitude of respiratory sinus arrhythmia (RSA) appears to correlate with cardiac vagal tone. However, recent studies showed that, under stress, RSA dissociates from vagal tone, indicating that separate mechanisms might regulate phasic and tonic vagal activity. This dissociation has been linked to the hypothesis that RSA improves pulmonary gas exchange through preferential distribution of heartbeats in inspiration. We examined the effects of hypercapnia and mild hypoxemia on RSA-vagal dissociation in relation to heartbeat distribution throughout the respiratory cycle in 12 volunteers. We found that hypercapnia, but not hypoxemia, was associated with significant increases in heart rate (HR), tidal volume, and RSA amplitude. The RSA amplitude increase remained statistically significant after adjustment for respiratory rate, tidal volume, and HR. Moreover, the RSA amplitude increase was associated with a paradoxical rise in HR and decrease in low-frequency-to-high-frequency mean amplitude ratio derived from spectral analysis, which is consistent with RSA-vagal dissociation. Although hypercapnia was associated with a significant increase in the percentage of heartbeats during inspiration, this association was largely secondary to increases in the inspiratory period-to-respiratory period ratio, rather than RSA amplitude. Additional model analyses of RSA were consistent with the experimental data. Heartbeat distribution did not change during hypoxemia. These results support the concept of RSA-vagal dissociation during hypercapnia; however, the putative role of RSA in optimizing pulmonary perfusion matching requires further experimental validation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Augmentation of respiratory sinus arrhythmia in response to progressive hypercapnia in conscious dogs.

Respiratory sinus arrhythmia (RSA) may serve to enhance pulmonary gas exchange efficiency by matching pulmonary blood flow with lung volume within each respiratory cycle. We examined the hypothesis that RSA is augmented as an active physiological response to hypercapnia. We measured electrocardiograms and arterial blood pressure during progressive hypercapnia in conscious dogs that were prepare...

متن کامل

Caregiving and long-term mechanical ventilation.

biofeedback as a method for assessing baroreflex function: a preliminary study of resonance in the cardiovascular system. Appl Psychophysiol Biofeedback 2002; 27:1–27 3 Yasuma F, Hayano J. Augmentation of respiratory sinus arrhythmia in response to progressive hypercapnia in conscious dogs. Am J Physiol Heart Circ Physiol 2001; 280: H2336–H2341 4 Yasuma F, Hayano J. Impact of acute hypoxia on h...

متن کامل

Respiratory sinus arrhythmia: opposite effects on systolic and mean arterial pressure in supine humans.

1. Are arterial blood pressure fluctuations buffered or reinforced by respiratory sinus arrhythmia (RSA)? There is still considerable debate about this simple question. Different results have been obtained, triggering a discussion as to whether or not the baroreflexes are responsible for RSA. We suspected that the measurements of different aspects of arterial pressure (mean arterial pressure (M...

متن کامل

Respiratory sinus arrhythmia in freely moving and anesthetized rats.

Heart rate increases during inspiration and slows during postinspiration; this respiratory sinus arrhythmia helps match pulmonary blood flow to lung inflation and maintain an appropriate diffusion gradient of oxygen in the lungs. This cardiorespiratory pattern is found in neonatal and adult humans, baboons, dogs, rabbits, and seals. Respiratory sinus arrhythmia occurs mainly due to inhibition o...

متن کامل

Role of acid-sensing ion channels in hypoxia- and hypercapnia-induced ventilatory responses

Previous reports indicate roles for acid-sensing ion channels (ASICs) in both peripheral and central chemoreception, but the contributions of ASICs to ventilatory drive in conscious, unrestrained animals remain largely unknown. We tested the hypotheses that ASICs contribute to hypoxic- and hypercapnic-ventilatory responses. Blood samples taken from conscious, unrestrained mice chronically instr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Respiratory physiology & neurobiology

دوره 174 1-2  شماره 

صفحات  -

تاریخ انتشار 2007